Ή διαφορετικά αρχή επαλληλίας και Ενέργεια
Στη διάρκεια της φετινής χρονιάς στο δίκτυό μας συζητήθηκε νομίζω σε αρκετή έκταση το τι συμβαίνει σε μια σύνθετη κίνηση. Συζητήσαμε τι συμβαίνει με την διατήρηση της ενέργειας και την αρχή της επαλληλίας. Αν υπάρχει σύνθετη κίνηση ή απλά ένα σώμα κάνει μόνο μια κίνηση, την οποία ΕΜΕΙΣ για διευκόλυνση στη μελέτη μας την αναλύουμε σε δύο ή περισσότερες;
Νομίζω στην τελευταία πρόταση όλοι συμφωνήσαμε, ανεξάρτητα των επιμέρους διαφωνιών για την αξία ή όχι της αρχής της επαλληλίας.
Και αφού σε μια σύνθετη κίνηση γενικά δεν ισχύει ότι Κ=Κ1+Κ2 όπου Κ η συνολική κινητική ενέργεια και Κ1 και Κ2 οι κινητικές ενέργειες για τις επιμέρους κινήσεις, τότε γιατί αυτό ισχύει για ένα στερεό που μεταφέρεται και ταυτόχρονα στρέφεται;
Ας δούμε λοιπόν σαν εφαρμογή, πόση είναι η κινητική ενέργεια ενός ελεύθερου στερεού το οποίο μεταφέρεται με ταχύτητα κέντρου μάζας υcm ενώ ταυτόχρονα περιστρέφεται γύρω από νοητό άξονα που περνά από το κέντρο μάζας του Κ, με γωνιακή ταχύτητα ω.
Πριν προχωρήσουμε θα πρέπει να τονισθούν δυο πράγματα.
1) Όταν λέμε ταχύτητα κέντρου μάζας προφανώς εννοούμε ως προς κάποιο σύστημα αναφοράς, το οποίο θεωρούμε ακίνητο. Αλλά αναφερόμενοι σε αδρανειακά συστήματα, το στερεό έχει την ίδια γωνιακή ταχύτητα ω, ως προς όλα τα συστήματα αναφοράς που μπορούμε να πάρουμε.
2) Αφού η ταχύτητα αναφέρεται ως προς ένα σύστημα αναφοράς, προφανώς και η κινητική ενέργεια υπολογίζεται ως προς αυτό το σύστημα αναφοράς. Στην περίπτωσή μας λοιπόν θα υπολογίσουμε την κινητική ενέργεια ως προς ένα ακίνητο παρατηρητή στο έδαφος, όπως στο σχήμα.
Η συνέχεια σε pdf.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου