Κυριακή, 22 Οκτωβρίου 2017

Τίποτα δεν πάει χαμένο…

Στην προηγούμενη ανάρτηση «Με την κρούση, κόβουμε και το νήμα» …με κατηγόρησε ο Βασίλης, ότι έκοψα το νήμα και …πήγε χαμένο!
Δεν ήξερε ότι το ένα κομμάτι μήκους l=20cm, θα το χρησιμοποιούσα στο επόμενο «πείραμα»!!! Το δίνω….
Δυο πλάκες με μάζες m1=1kg και m2=9kg ηρεμούν στην ίδια κατακόρυφη, στα άκρα δύο ελατηρίων με σταθερές k1=40Ν/m και k2=160Ν/m αντίστοιχα, απέχοντας κατά h=1,2m. Μετακινούμε τα σώματα κατακόρυφα και τα δένουμε με το νήμα μήκους l=20cm, όπως στο σχήμα.
Σε μια στιγμή κόβουμε (ξανά!!!) το νήμα, οπότε τα σώματα αρχίζουν να ταλαντώνονται.
i) Να βρεθεί το πλάτος ταλάντωσης κάθε σώματος.
ii) Σε πόσο χρόνο η απόσταση των δύο σωμάτων θα γίνει ξανά 20cm για πρώτη φορά;
ή

Σάββατο, 21 Οκτωβρίου 2017

Με την κρούση, κόβουμε και το νήμα

Ένα σώμα Σ μάζας m=4kg ηρεμεί δεμένο στο άκρο ενός ιδανικού ελατηρίου σταθεράς k=40Ν/m, σε λείο οριζόντιο επίπεδο. Μετακινούμε το σώμα προς τα αριστερά συσπειρώνοντας το ελατήριο κατά Δl και στη θέση αυτή το δένουμε με το νήμα, όπως στο κάτω σχήμα.
Ένα δεύτερο σώμα Β της ίδιας μάζας m κινείται στο ίδιο οριζόντιο επίπεδο με διεύθυνση τον άξονα του ελατηρίου, με σταθερή ταχύτητα υ0=1m/s. Τα δυο σώματα συγκρούονται κεντρικά και ελαστικά τη στιγμή t0=0. Τη στιγμή της κρούσης, με ένα ψαλίδι, κόβουμε ταυτόχρονα και το νήμα που συγκρατούσε το σώμα Σ. Μετά την κρούση το Σ κινείται προς τα αριστερά μέχρι να μηδενιστεί στιγμιαία η ταχύτητά του τη στιγμή t1=1/3s.
i)  Να βρεθούν οι ταχύτητες των δύο σωμάτων μετά την κρούση τους.
ii) Να βρεθεί η μεταβολή της φάσης της απομάκρυνσης του σώματος Σ, από την στιγμή της κρούσης έως τη στιγμή t1.
iii) Να βρεθεί η αρχική συσπείρωση Δl του ελατηρίου.
iv) Αν τα δυο σώματα συγκρούονται ξανά κεντρικά και ελαστικά τη στιγμή t2, ζητούνται:
 α) Η απόσταση των δύο σωμάτων, όταν το ελατήριο αποκτήσει το φυσικό μήκος του, για πρώτη φορά.
 β) Πόσο καθυστέρησε η απόκτηση του φυσικού μήκους του ελατηρίου, εξαιτίας της δεύτερης κρούσης μεταξύ των σωμάτων;
γ)  Θεωρώντας τη θέση φυσικού μήκος του ελατηρίου, ως αρχή ενός οριζόντιου άξονα x, με θετική φορά προς τα δεξιά, να γράψετε τις συναρτήσεις x=x(t), της θέσης κάθε σώματος σε συνάρτηση με το χρόνο και να γίνουν οι γραφικές παραστάσεις τους.
Δίνεται ότι η διάρκεια κάθε κρούσης είναι αμελητέα, τα σώματα θεωρούνται υλικά σημεία αμελητέων διαστάσεων και π2≈10.
ή


Τρίτη, 17 Οκτωβρίου 2017

Μια ταλάντωση και το ύψος

Ένα σώμα Σ μάζας 1kg, εκτελεί αατ στο άκρο ενός κατακόρυφου ιδανικού ελατηρίου.
i)  Να αποδείξετε ότι το ύψος h του σώματος από το έδαφος, είναι αρμονική συνάρτηση του χρόνου.
ii)  Αν η γραφική παράσταση του ύψους του σώματος από το έδαφος είναι της μορφής του (α) σχήματος, να βρεθεί η εξίσωση της απομάκρυνσης του σώματος από τη θέση ισορροπίας σε συνάρτηση με το χρόνο, θεωρώντας την προς τα πάνω κατεύθυνση ως θετική.

iii) Σε μια επανάληψη του πειράματος, το σώμα Σ κάποια στιγμή t1 συγκρούεται με δεύτερο σώμα Β, το οποίο κινείται κατακόρυφα, με αποτέλεσμα η γραφική παράσταση του ύψους σε συνάρτηση με το χρόνο, να είναι της μορφής του (β) σχήματος.
 α) Η κρούση αυτή είναι πλαστική ή όχι και γιατί;
 β) Το σώμα Β πριν την κρούση είχε ταχύτητα προς τα πάνω ή προς τα κάτω;
Να δικαιολογήσετε τις απαντήσεις σας.
iv) Σε ένα άλλο πείραμα το σώμα Σ συγκρούεται με σώμα Γ, με αποτέλεσμα η αντίστοιχη γραφική παράσταση να είναι η (γ) στο παραπάνω σχήμα.
α) Πόση είναι η μάζα του σώματος Γ;
β) Να βρεθεί η ταχύτητα του σώματος Γ ελάχιστα πριν την κρούση.
Δίνεται g=10m/s2 και π2≈10.
ή



Παρασκευή, 13 Οκτωβρίου 2017

Η στατική τριβή κατά την περιστροφή


Ο οριζόντιος δίσκος του σχήματος, μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος περνά από το κέντρο του Ο και ηρεμεί. Τοποθετούμε πάνω του ένα σώμα Σ, μάζας m=2kg, το οποίο θεωρείται υλικό σημείο, σε απόσταση R=2m από το κέντρο του. Σε μια στιγμή ο δίσκος τίθεται σε περιστροφή και στο σχήμα δίνεται το γράφημα της γωνιακής του ταχύτητας σε συνάρτηση με το χρόνο, ενώ το σώμα Σ κινείται κυκλικά χωρίς να ολισθαίνει πάνω στο δίσκο.
i)  Να υπολογιστεί η γωνιακή επιτάχυνση του δίσκου, καθώς και η επιτρόχια επιτάχυνση του σώματος Σ τη χρονική στιγμή t1=1s.
ii) Να βρεθεί η τριβή (μέτρο και κατεύθυνση) η οποία ασκείται στο σώμα Σ τη στιγμή t0=0+ (αμέσως μόλις αρχίσει η περιστροφή).
iii) Ποια η αντίστοιχη απάντηση για την ασκούμενη τριβή τη χρονική στιγμή t2=5s;
iv) Σε μια επανάληψη του πειράματος, ο δίσκος τίθεται ξανά σε περιστροφή με την ίδια γωνιακή επιτάχυνση, χωρίς αυτή να μηδενίζεται τη στιγμή t=4s, οπότε παρατηρούμε ότι το σώμα Σ αρχίζει να ολισθαίνει τη χρονική στιγμή t3=4,2s. Να υπολογιστεί ο συντελεστής οριακής στατικής τριβής μεταξύ του σώματος και του δίσκου.
Στον σχεδιασμό της δύναμης τριβής, σε κάθε περίπτωση, να μην αναζητηθεί η ακριβής θέση του σώματος και η γωνία κατά την οποία έχει περιστραφεί ο δίσκος.
Δίνεται g=10m/s2.
ή


Πέμπτη, 12 Οκτωβρίου 2017

Ενέργεια ταλάντωσης vs Μηχανικής Ενέργειας

Μια πλάκα Β εκτελεί κατακόρυφη απλή αρμονική ταλάντωση στο πάνω άκρο ενός ιδανικού ελατηρίου σταθεράς k=100Ν/m με πλάτος Α1=0,2m.
i)  Να υπολογιστεί η ενέργεια ταλάντωσης.
ii) Πόση είναι η μηχανική ενέργεια του συστήματος πλάκα-ελατήριο; Θεωρείστε το οριζόντιο επίπεδο που περνά από τη θέση ισορροπίας, ως επίπεδο μηδενικής βαρυτικής δυναμικής ενέργειας.
iii) Τη στιγμή που η πλάκα φτάνει στην κάτω ακραία θέση της, τοποθετείται πάνω της (χωρίς ταχύτητα) ένα σώμα Γ μάζας 2kg. Να βρεθεί η ενέργεια ταλάντωσης του συστήματος πλάκα-σώμα Γ.

ή

Τρίτη, 10 Οκτωβρίου 2017

Ταλάντωση και ανελαστική κρούση

Μια μικρή σφαίρα ηρεμεί στο κάτω άκρο ενός ιδανικού ελατηρίου, το πάνω άκρο του οποίου έχει στερεωθεί στο ταβάνι ενός δωματίου. Στην θέση ηρεμίας η σφαίρα απέχει κατά d, από το δάπεδο του δωματίου. Μετακινούμε κατακόρυφα προς τα πάνω την σφαίρα, μέχρι να έρθει σε ύψος h=3d, από το δάπεδο και σε μια στιγμή t=0, την αφήνουμε να εκτελέσει  αατ.
i)   Η σφαίρα θα συγκρουσθεί με το δάπεδο τη χρονική στιγμή:
α) t1=2T/5,    β) t1=T/3,      γ) t1=3T/5.
ii)  Αν κατά την κρούση της σφαίρας με το δάπεδο, η κινητική της ενέργεια μειώνεται κατά 20%, τότε η νέα ταλάντωση (μετά την κρούση), θα έχει μικρότερη ενέργεια ταλάντωσης, σε σχέση με την αρχική, κατά:
α) 10%,   β) 15%,   γ) 20%,   δ) 25%.
Να δικαιολογήσετε τις απαντήσεις σας.

ή

Τετάρτη, 4 Οκτωβρίου 2017

Μετά από δυο ελαστικές κρούσεις!

Δυο μικρές σφαίρες Α και Β με ίσες (μικρές) ακτίνες ηρεμούν όπως στο σχήμα (αριστερά στο σχήμα), στα κάτω άκρα δύο όμοιων ιδανικών ελατηρίων, τα πάνω άκρα των οποίων έχουν στερεωθεί στο ταβάνι ενός δωματίου. Μετακινούμε κατακόρυφα προς τα πάνω τις δυο σφαίρες, μέχρι να φτάσουν σε ύψος h, από το δάπεδο και σε μια στιγμή t=0, τις αφήνουμε ταυτόχρονα να κινηθούν, εκτελώντας αατ.
i)  Ποια  σφαίρα έχει μεγαλύτερη ενέργεια ταλάντωσης;
ii) Ποια σφαίρα θα έχει μεγαλύτερη περίοδο ταλάντωσης;
iii) Αν οι σφαίρες συγκρούονται ελαστικά με το δάπεδο, ποια σφαίρα θα έχει μεγαλύτερη κινητική ενέργεια,  αμέσως μετά την κρούση;
ή


Δευτέρα, 2 Οκτωβρίου 2017

Για να μην χάσουμε τα συμπεράσματα.

Η τομή ενός ομογενούς στερεού s είναι ορθογώνιο ΑΒΓΔ με πλευρές (ΑΒ)=2α και (ΑΔ)=3α. Αφήνουμε το στερεό σε κεκλιμένο επίπεδο κλίσεως θ, όπου ημθ=0,6 και συνθ=0,8. Να εξετάσετε αν το στερεό θα ανατραπεί, όταν για το συντελεστή τριβής μεταξύ του στερεού s και του επιπέδου, ισχύει: