Τετάρτη, 23 Αυγούστου 2017

Τέσσερες κρούσεις σε μια περίοδο

Σε λείο οριζόντιο επίπεδο, δεμένα στα άκρα δύο όμοιων ελατηρίων, ηρεμούν δυο σώματα Α και Β, της ίδιας μάζας m=1kg, σε απόσταση 2m. Στο μέσον της απόστασής του, την οποία θεωρούμε ως αρχή ενός άξονα x, τοποθετούμε ένα τρίτο σώμα Γ, της ίδιας μάζας, το οποίο εκτοξεύουμε στη διεύθυνση x με ταχύτητα υο=2m/s, όπως στο σχήμα τη στιγμή t0=0. Το σώμα Γ φτάνει στη θέση x=0, κινούμενο ξανά προς τα δεξιά με ταχύτητα υ1 τη στιγμή t΄=3s, αφού προηγουμένως έχει συγκρουσθεί κεντρικά και ελαστικά πρώτα με το Β και μετά με το Α σώμα.
i)  Να βρεθεί η ταχύτητα υ1, καθώς και η σταθερά k των ελατηρίων.
ii) Να υπολογιστεί η ενέργεια ταλάντωσης κάθε σώματος τις χρονικές στιγμές t1=0,25s, t2=0,6s, t3=2,3s και  t4=2,7s.
iii) Να γράψετε τις εξισώσεις x=f(t) για τις θέσεις κάθε σώματος (πάνω στον καθορισμένο άξονα x) σε συνάρτηση με το χρόνο, μέχρι τη στιγμή t΄.
iv) Να παραστήσετε γραφικά τις παραπάνω εξισώσεις (συναρτήσεις) x=f(t).
ή



Παρασκευή, 18 Αυγούστου 2017

Ένα Β΄ θέμα για…εμπέδωση!

Μια μικρή σφαίρα μάζας m κινείται χωρίς τριβές σε λείο οριζόντιο επίπεδο και συγκρούεται με ράβδο μήκους l και μάζας Μ=3m. Η σφαίρα προσπίπτει κάθετα στη ράβδο, κτυπώντας την στο σημείο Ρ, το οποίο απέχει κατά d=0,1l από το άκρο Α, όπως στο σχήμα, με ταχύτητα υ0. Μετά την κρούση η σφαίρα παραμένει ακίνητη στο σημείο κρούσης.
i) Για την ταχύτητα uΡ του σημείου Ρ, αμέσως μετά την κρούση ισχύει:
α) uΡ0,   β) uΡ = υ0,   γ) uΡ > υ0.
ii) Η παραπάνω κρούση είναι ή όχι ελαστική;
Να δικαιολογήσετε τις απαντήσεις σας.
Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιcm=Μl2/12.
ή



Δευτέρα, 14 Αυγούστου 2017

Μια κρούση σφαίρας με ορθογώνια πλάκα

Σε λείο οριζόντιο επίπεδο έχουμε καρφώσει μια ορθογώνια πλάκα κέντρου Κ και μάζας Μ=1,2kg. Μια μικρή σφαίρα μάζας m=0,4kg κινείται στο ίδιο οριζόντιο επίπεδο, χωρίς τριβές, με ταχύτητα υ0=5m/s και συγκρούεται ελαστικά στο σημείο Α, με την μια πλευρά του ορθογωνίου. Η ταχύτητα αυτή σχηματίζει γωνία θ, όπου ημθ=0,6 με την κάθετη στην πλευρά, η οποία διέρχεται και από το κέντρο Κ της πλάκας, όπως στο σχήμα (σε κάτοψη). Η κρούση διαρκεί απειροελάχιστα και στη διάρκειά της δεν αναπτύσσονται τριβές μεταξύ σφαίρας και πλάκας (λείες επιφάνειες).
i)  Να βρεθεί η ταχύτητα της σφαίρας μετά την κρούση και η γωνία φ που σχηματίζει αυτή με την κάθετη ΑΚ.
ii) Απελευθερώνουμε την πλάκα και επαναλαμβάνουμε το ίδιο ακριβώς πείραμα, αλλά τώρα η πλάκα μπορεί να κινηθεί μετά την κρούση.
α) Ποια η τελική ταχύτητα της σφαίρας και ποια η νέα γωνία φ1 που σχηματίζει με την ΑΚ;
β) Ποια η ταχύτητα της πλάκας μετά την κρούση;
iii) Σε μια επανάληψη του πειράματος η σφαίρα συγκρούεται με την πλάκα στο σημείο Β του σχήματος. Θα αλλάξει κάτι όσον αφορά τις κινήσεις των δύο σωμάτων μετά την κρούση;
ή


Παρασκευή, 11 Αυγούστου 2017

Μια σφαίρα πάνω σε σανίδα


Μια λεπτή σανίδα ηρεμεί σε λείο οριζόντιο επίπεδο, ενώ στο μέσον της ηρεμεί μια ομογενής σφαίρα κέντρου Ο. Σε μια στιγμή ασκούμε στη σανίδα μια οριζόντια δύναμη F με αποτέλεσμα να επιταχυνθεί, προς τα δεξιά όπως στο  σχήμα, ενώ η σφαίρα κυλίεται (χωρίς να ολισθαίνει).
i) Η σφαίρα θα κινηθεί προς τα δεξιά ή προς τα αριστερά;
ii) Η σφαίρα θα εγκαταλείψει τη σανίδα από το άκρο της Κ, από το άκρο Λ ή θα παραμείνει διαρκώς πάνω στη σανίδα;
Να δικαιολογήσετε τις απαντήσεις σας.
ή



Τετάρτη, 9 Αυγούστου 2017

Ένα σύστημα, η ορμή και η ενέργεια


Μια λεπτή σανίδα AB, μήκους 4m και μάζας Μ=1kg, ηρεμεί σε λείο οριζόντιο επίπεδο. Πάνω στη σανίδα και στο αριστερό άκρο της Α ηρεμεί ένα μικρό σώμα Σ, μάζας m=0,2kg. Κάποια στιγμή t0=0 το Σ δέχεται στιγμιαίο κτύπημα, με αποτέλεσμα να αποκτήσει αρχική ταχύτητα υ0=4m/s και να κινηθεί κατά μήκος της σανίδας.
Αν τη στιγμή t1=1s, το Σ έχει ταχύτητα υ1=2m/s, να βρεθούν τη χρονική αυτή στιγμή:
i) Η ταχύτητα της σανίδας.
ii) Οι ρυθμοί μεταβολής της ορμής, του σώματος Σ, της σανίδας και του συστήματος σώμα Σ-σανίδα.
iii) Η απόσταση του σώματος Σ από το άκρο Β της σανίδας.
iv) Ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ και της σανίδας, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας των τριβών.
Επαναλαμβάνουμε το πείραμα, αλλά τώρα η σανίδα αρχικά ηρεμεί σε οριζόντιο επίπεδο με το οποίο εμφανίζει τριβή με συντελεστές τριβής μs=μ=0,02. Ξανά για τη στιγμή t1=1s, να υπολογιστούν:
v) Οι ταχύτητες του Σ και της σανίδας.
vi) Ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ και της σανίδας, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας των τριβών.
Δίνεται g=10m/s2.

ή

Δευτέρα, 31 Ιουλίου 2017

Οι ενέργειες σε ένα στάσιμο κύμα.



Έστω ότι σε ένα ελαστικό μέσο, μια χορδή, έχει δημιουργηθεί ένα στάσιμο κύμα με εξίσωση:

Όπως αυτό που μελετά το σχολικό βιβλίο.
Κάθε στοιχειώδες τμήμα της χορδής θα έχει κινητική ενέργεια, εξαιτίας της ταχύτητας ταλάντωσης και μια δυναμική ενέργεια, εξαιτίας της παραμόρφωσης που υπόκειται.
Με βάση την αντίστοιχη μελέτη πάνω σε ένα τρέχον κύμα, που έγινε στην ανάρτηση «Η ενέργεια και η ισχύς σε ένα αρμονικό κύμα», για τις ενέργειες αυτές θα έχουμε:

Κάθε στοιχειώδες τμήμα της χορδής μήκους dx και μάζας m1=dm=μdx έχει κινητική ενέργεια:
Διαβάστε τη συνέχεια...
ή

Τρίτη, 25 Ιουλίου 2017

Ταχύτητες και επιταχύνσεις σε ένα παλμό

Κατά μήκος ενός γραμμικού ελαστικού μέσου (μιας χορδής), το οποίο ταυτίζεται με τον άξονα x και από αριστερά προς τα δεξιά διαδίδεται ο παλμός του διπλανού σχήματος με ταχύτητα υ.
i) Για τις ταχύτητες στη διεύθυνση y των σημείων Α και Β ισχύει:
α) uΑ < uΒ,    β)  uΑ = uΒ,    γ)  uΑ > uΒ.
ii) Για το μέτρο της ταχύτητας του σημείου Β ισχύει:
α) uΒ < υ,     β)  uΒ=υ,     γ)  uΒ > υ.
iii) Να σημειώστε πάνω στο σχήμα τις επιταχύνσεις των σημείων Α, Β, Γ και Δ.
iv) Να εξετασθεί αν μπορεί να υπάρξει διάδοση των παρακάτω παλμών, κατά μήκος μιας χορδής.

Δίνεται ότι σε όλες τις περιπτώσεις έχουμε μικρές εγκάρσιες απομακρύνσεις στη διεύθυνση y, με αποτέλεσμα να ισχύει η διαφορική εξίσωση του κύματος.

ή

Σάββατο, 22 Ιουλίου 2017

Μια κρούση και τα έργα της δύναμης του ελατηρίου

Ένα σώμα Σ μάζας m=1kg ηρεμεί σε λείο οριζόντιο επίπεδο, δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=100Ν/m, το άλλο άκρο του οποίου έχει δεθεί σε κατακόρυφο τοίχο, όπως στο πρώτο σχήμα.
Σε μια στιγμή (t=0) ένα δεύτερο σώμα Σ΄ μάζας 0,5kg κινούμενο κατά τη διεύθυνση του άξονα του ελατηρίου, με ταχύτητα υ΄=3m/s συγκρούεται κεντρικά και ελαστικά με το Σ. Η διάρκεια της κρούσης θεωρείται αμελητέα.
i)   Ποια χρονική στιγμή t1 θα μηδενιστεί για πρώτη φορά η ταχύτητα του Σ και σε πόση απόσταση από την αρχική του θέση θα συμβεί αυτό; Να υπολογιστεί το έργο της δύναμης του ελατηρίου στο παραπάνω χρονικό διάστημα.
Επαναλαμβάνουμε την ίδια κρούση, αλλά τώρα το δεξιό άκρο του ελατηρίου δεν έχει δεθεί σε τοίχο, αλλά σε ένα σώμα Σ1 μάζας m, όπως στο 2ο σχήμα. Αν κάποια στιγμή t2 τα σώματα Σ και Σ1 έχουν ίσες ταχύτητες:
ii)  Ποιο το μέτρο της ταχύτητας των Σ και Σ1 τη στιγμή t2; Να υπολογιστεί το έργο της δύναμης του ελατηρίου που ασκείται σε κάθε σώμα, στο χρονικό διάστημα 0-t2, όπως και η δυναμική ενέργεια του ελατηρίου τη στιγμή t2. Ποιος ο ρυθμός μεταβολής της δυναμικής ενέργειας του ελατηρίου τη στιγμή αυτή;
iii)* Ποια χρονική στιγμή θα μηδενιστεί στιγμιαία η ταχύτητα του σώματος Σ; Να γίνει η γραφική παράσταση υ=υ(t) της ταχύτητας του σώματος Σ σε συνάρτηση με το χρόνο, μετά την κρούση.
* To iii) ερώτημα δεν απευθύνεται σε μαθητές.
ή