Κατά μήκος ενός γραμμικού ελαστικού μέσου και από τα αριστερά προς τα δεξιά διαδίδεται χωρίς απώλειες ένα αρμονικό κύμα, το οποίο τη στιγμή t0=0 φτάνει σε ένα σημείο Ο, το οποίο λαμβάνουμε ως αρχή ενός προσανατολισμένου άξονα x, με την προς τα δεξιά κατεύθυνση ως θετική. Το σημείο Ο ξεκινά την ταλάντωσή του προς τα πάνω (θετική φορά του άξονα y) και φτάνει σε μέγιστη απομάκρυνση 0,2m τη στιγμή t1=0,2s. Το κύμα φτάνει σε ένα σημείο Κ, στη θέση xΚ=x2=3,5m τη χρονική στιγμή t2=1,4s.
i) Να γράψετε τις εξισώσεις για την απομάκρυνση σε συνάρτηση με το χρόνο, για τις ταλαντώσεις που θα εκτελέσουν τα σημεία Ο και Κ.
ii) Να βρεθεί η εξίσωση του κύματος.
iii) Να σχεδιάστε το στιγμιότυπο του κύματος τη στιγμή t2 που το κύμα φτάνει στο σημείο Κ και για την περιοχή του θετικού ημιάξονα. Ποια η απομάκρυνση του σημείου Ο την παραπάνω χρονική στιγμή;
iv) Ένα σημείο Λ, βρίσκεται στη θέση xΛ= 4/3 m.
α) Να βρεθούν η απομάκρυνση από τη θέση ισορροπίας του, η ταχύτητα και η επιτάχυνση του σημείου Λ τη στιγμή t2.
β) Να κάνετε τη γραφική παράσταση της ταχύτητας ταλάντωσης του σημείου Λ και για το χρονικό διάστημα από 0-t2.
ή
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου