Κυριακή 17 Μαρτίου 2019

Κόβοντας έναν δίσκο στη μέση


Ένας ομογενής δίσκος, κέντρου Κ, ακτίνας R και μάζας Μ, μπορεί να περιστρέφεται χωρίς τριβές, γύρω από οριζόντιο άξονα, ο οποίος περνά από ένα σημείο Α της περιφέρειάς του, με το επίπεδό του κατακόρυφο. Φέρνουμε το δίσκο στη θέση που δείχνει το διπλανό σχήμα, όπου η ακτίνα ΚΑ είναι οριζόντια και τον αφήνουμε να περιστραφεί, με αποτέλεσμα το σημείο Β, αντιδιαμετρικό του Α, να αποκτά αρχική επιτάχυνση μέτρου α1=4g/3.
i) Η ροπή αδράνειας του δίσκου ως προς τον άξονα περιστροφής του στο Α, δίνεται από την εξίσωση:
α) Ι1= ½ ΜR2,   β) Ι1= ΜR2,   γ) Ι1= 1,5ΜR2,   δ) Ι1= 2 ΜR2.
ii) Κόβουμε το δίσκο κατά μήκος της διαμέτρου ΑΒ, κρατώντας το ένα τμήμα του, το οποίο μπορεί να στρέφεται γύρω από τον ίδιο άξονα στο Α. Φέρνουμε το ημικύκλιο στη θέση του σχήματος, όπου και πάλι η διάμετρος ΑΒ να είναι οριζόντια, οπότε ο φορέας του βάρους διέρχεται ξανά από το κέντρο Κ και το αφήνουμε να περιστραφεί. Η αρχική επιτάχυνση του σημείου Κ θα έχει μέτρο:
α) α2=g/3,   β) α2=2g/3,    γ) α2=g,   δ) α2=4g/3.
όπου g η επιτάχυνση της βαρύτητας.
Να δικαιολογήσετε τις απαντήσεις σας
ή

Δεν υπάρχουν σχόλια: