Σε λείο οριζόντιο επίπεδο ηρεμεί μια ομογενής δοκός ΑΒ μήκους 4m και βάρους 400Ν. Σε μια στιγμή στο άκρο Α τη δοκού, ασκούμε μια κατακόρυφη δύναμη, με φορά προς τα πάνω, μέτρου F=80Ν και παρατηρούμε ότι η σανίδα συνεχίζει να ηρεμεί.
i) Να βρεθεί η δύναμη που ασκεί το επίπεδο στη δοκό, καθώς και η ροπή της ως προς το κέντρο μάζας Κ της δοκού.
ii) Ποια η μέγιστη τιμή F1 που μπορεί να πάρει το μέτρο της δύνα-μης αυτής, χωρίς να πάψει η δοκός να ισορροπεί;
iii) Μεταβάλλοντας το μέτρο της κατακόρυφης αυτής δύναμης, ανασηκώνουμε τη δοκό, φέρνοντάς την να ισορροπεί σε μια νέα θέση, όπου σχηματίζει με το οριζόντιο επίπεδο γωνία θ, όπως στο κάτω σχήμα. Να υπολογίστε το μέτρο της δύναμης F2, σε συνάρτηση με την γωνία θ.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου