Πέμπτη, 21 Σεπτεμβρίου 2017

Η αρχή της επαλληλίας… και η ενέργεια

Μια μπάλα μάζας 0,2kg εκτοξεύεται οριζόντια με κάποια αρχική ταχύτητα, με αποτέλεσμα  σε μια στιγμή, που θεωρούμε t=0, να περνά από σημείο Α, με ταχύτητα μέτρου υ1=5m/s, η οποία σχηματίζει γωνία φ με την κατακόρυφη, όπου ημθ=0,6 και συνφ=0,8, όπως στο διπλανό σχήμα. Η μπάλα φτάνει στο έδαφος μετά από 2s.
i)  Υποστηρίζει κάποιος τη θέση, ότι η κίνηση της μπάλας μπορεί να μελετηθεί με βάση την αρχή ανεξαρτησίας των κινήσεων. Μια ευθύγραμμη ομαλή στη διεύθυνση της ταχύτητας υ1 και μια ελεύθερη πτώση στη κατακόρυφη διεύθυνση. Είναι σωστή η θέση αυτή;
ii) Αν είναι σωστή, να εφαρμοστεί για να υπολογιστεί το μέτρο της τελικής ταχύτητας της μπάλας, καθώς και η τελική της κινητική ενέργεια.
Δίνεται g=10m/s2.
ή



Τετάρτη, 20 Σεπτεμβρίου 2017

Κρούσεις μέσα σε ένα δωμάτιο

Στο κέντρο της βάσης ΑΒΓΔ ενός δωματίου, σχήματος τετραγώνου και πλευράς α=4m, ηρεμεί μια σφαίρα Υ μάζας Μ=0,2kg. Κάποια στιγμή εκτοξεύεται οριζόντια, από κάποιο σημείο του δαπέδου, μια σφαίρα Χ, μάζας m=0,1kg με ταχύτητα υ1=5m/s, η οποία σχηματίζει με την πλευρά ΑΔ γωνία φ (ημφ=0,8 και συνφ=0,6). Οι δυο σφαίρες συγκρούονται ελαστικά τη στιγμή t=0 και στη συνέχεια η σφαίρα Υ φτάνει στο μέσον Μ της πλευράς ΓΔ, όπου και συγκρούεται ελαστικά με τον τοίχο.
Δίνεται ότι δεν αναπτύσσονται δυνάμεις τριβής, ούτε κατά την κίνηση των σφαιρών, ούτε στη διάρκεια των κρούσεων, ενώ η διάρκεια των κρούσεων θεωρείται αμελητέα.
i)  Ποιες χρονικές στιγμές η σφαίρα Υ θα συγκρουστεί με τοίχο για πρώτη και δεύτερη φορά;
ii) Με ποια πλευρά του δωματίου θα συγκρουστεί η σφαίρα Χ, μετά την κρούση της με τη σφαίρα Υ; Ποια χρονική στιγμή θα συμβεί αυτό;
iii) Να υπολογιστεί η μεταβολή της ορμής της σφαίρας Χ:
 α) Κατά την κρούση της με τη σφαίρα Υ.
 β) Κατά την πρώτη ελαστική της κρούση με τον τοίχο.
ή

Τετάρτη, 13 Σεπτεμβρίου 2017

Η μέγιστη κινητική ενέργεια…

Σε λείο οριζόντιο επίπεδο, κινούνται στην ίδια ευθεία δύο  σφαίρες Α και Β με ίσες ακτίνες, οι οποίες κάποια στιγμή συγκρούονται κεντρικά και ελαστικά. Δίνεται ότι mΑ=m και mΒ=2m, ενώ πριν την κρούση η Α σφαίρα έχει ταχύτητα μέτρου υ1 με φορά προς τα δεξιά.
i)  Αν κατά την κρούση η σφαίρα Α αυξάνει την κινητική της ενέργεια, τότε η ταχύτητα της Β σφαίρας πριν την κρούση:
 α) Έχει φορά προς τα δεξιά.
 β) Είναι μηδενική
 γ) έχει φορά προς τα αριστερά.
ii) Αν η σφαίρα Β, μεταφέρει στην Α σφαίρα το 100% της κινητικής της ενέργειας, τότε η ταχύτητά της πριν την κρούση είχε μέτρο:
α) υ21,  β) υ2=2υ1,   γ) υ2=3υ1.
iii) Στην παραπάνω περίπτωση, η μέγιστη κινητική ενέργεια που αποκτά η σφαίρα Α μετά την κρούση, είναι:

α) Κmαx= ½ mυ12,   β) Κmαx= 4∙ ½ mυ12,  γ) Κmαx= 8∙ ½ mυ12,  δ) Κmαx= 9∙ ½ mυ12.
Απάντηση:
ή


Δευτέρα, 11 Σεπτεμβρίου 2017

Κάποιες ελαστικές κρούσεις…

Σε λείο δάπεδο ενός ορθογώνιου δωματίου ΓΔΕΖ, εκτοξεύουμε μια σφαίρα Α, μάζας m, από την κορυφή Γ με κατεύθυνση την απέναντι κορυφή Ε, όπως στο σχήμα (κάτοψη). Στην πορεία της η σφαίρα Α συγκρούεται ελαστικά με ακίνητη σφαίρα Β, μάζας Μ. Μετά την κρούση η σφαίρα Β φτάνει στην κορυφή Ε.
i)  Ποιο από τα διανύσματα α,β,γ,δ και ε, μπορεί να παριστά την ταχύτητα της Α σφαίρας μετά την κρούση; Υπάρχει περίπτωση, κανένα από τα διανύσματα αυτά να μην παριστά την ταχύτητα της σφαίρας Α; Να εξετάσετε τρεις περιπτώσεις:
α) m < Μ,   β)  m=Μ  και γ) m > Μ
ii) Σε μια επανάληψη του πειράματος, η σφαίρα Β μετά την κρούση, πέφτει κάθετα στον τοίχο ΖΕ. Ποιο από τα διανύσματα a, b, c, d μπορεί να παριστά την ταχύτητα της Α σφαίρας, μετά την κρούση;  Να εξετάσετε τις τρεις περιπτώσεις για τη σχέση μαζών, όπως και προηγουμένως.
Να δικαιολογήσετε τις απαντήσεις σας.

ή

Σάββατο, 9 Σεπτεμβρίου 2017

Μια πλάγια βολή και μια κρούση.

Μια μπάλα εγκαταλείπει ένα κεκλιμένο επίπεδο που βρίσκεται πάνω σε ένα τραπέζι με ταχύτητα υ0, όπως στο σχήμα, από σημείο Ο σε  ύψος h. Η μπάλα συγκρούεται ελαστικά με το λείο έδαφος, στη θέση Α και στη συνέχεια φτάνει σε μέγιστο ύψος από το έδαφος h1, θέση Β.
i) Για το μέτρο της ταχύτητας στο μέγιστο ύψος (θέση Β) ισχύει:
 α) υ1 < υ0,   β) υ1 = υ0,    γ) υ1 > υ0.  
ii) Για τα ύψη στις θέσεις Ο και Β,  ισχύει:
 α) h1 < h,   β) h1=h,    γ) h1 > h.
ή


Πέμπτη, 7 Σεπτεμβρίου 2017

Θέματα επαναληπτικών εξετάσεων στη Φυσική. 2017


Ομογενές στερεό σώμα Σ συνολικής μάζας Μ = 8 kg αποτελείται από δύο κολλημένους ομοαξονικούς κυλίνδρους με ακτίνες R και 2R, όπου R = 0,1 m όπως φαίνεται στα σχήματα 4α και 4β (το 4β αποτελεί εγκάρσια τομή του 4α)


Δείτε τα θέματα από εδώ:
them_fis_op_c_epan_170906

Δείτε ακόμη:
Φυσική προσανατολισμού επαναληπτικές 2017 εσπερινό
Φυσική προσανατολισμού επαναληπτικές 2017 ομογενείς

Δευτέρα, 4 Σεπτεμβρίου 2017

Μια κρούση και η σύνδεση με τα προηγούμενα…


Δύο σφαίρες Α και Β, με μάζες m1=2kg και m2=3kg αντίστοιχα κρέμονται από το ίδιο σημείο Ο, με νήματα ίδιου μήκους l=1,25m. Το Ο απέχει από το έδαφος απόσταση 2,5m. Φέρνουμε την Α σφαίρα στη θέση που δείχνει το διπλανό σχήμα, όπου το νήμα γίνεται οριζόντιο και την αφήνουμε να κινηθεί. Μετά από λίγο οι σφαίρες συγκρούονται κεντρικά και ελαστικά, ενώ το νήμα που συγκρατεί την σφαίρα Α κόβεται ελάχιστα πριν την κρούση.
i) Να υπολογιστούν οι ταχύτητες της Α σφαίρας ελάχιστα πριν και αμέσως μετά την κρούση.
ii) Να βρεθεί η μέγιστη γωνία εκτροπής του νήματος που συνδέει την σφαίρα Β, με την κατακόρυφη, μετά την κρούση.
iii) Να βρεθεί η δύναμη που ασκεί το νήμα στην σφαίρα Β:
 α) πριν την κρούση,  β) αμέσως μετά την κρούση,  γ) στη θέση μηδενισμού της ταχύτητάς της.
iv) Σε πόση απόσταση, από την κατακόρυφη που περνά από το Ο, η σφαίρα Α θα κτυπήσει στο έδαφος;
Οι σφαίρες να θεωρηθούν υλικά σημεία αμελητέας ακτίνας, ενώ g=10m/s2.
ή


Παρασκευή, 1 Σεπτεμβρίου 2017

Δυο ταλαντώσεις και δύο κρούσεις

Σε λείο οριζόντιο επίπεδο, δεμένα στα άκρα δύο ιδανικών ελατηρίων, ηρεμούν δυο σώματα Α και Β, με μάζες m1=0,5kg και m2=2kg, απέχοντας κατά d=0,4m, όπως στο σχήμα.
Εκτρέπουμε το μεν Α σώμα προς τα αριστερά, το δε Β προς τα δεξιά, κατά την ίδια απόσταση d και τη στιγμή t=0, τα αφήνουμε να κινηθούν. Τα σώματα, χωρίς να αλλάξουν διεύθυνση κίνησης, συγκρούονται κεντρικά και ελαστικά, στη θέση ισορροπίας του σώματος Β.
i)  Αν η σταθερά του δεύτερου ελατηρίου είναι k2=50Ν/m, να βρεθεί η σταθερά k1 του πρώτου.
ii) Να υπολογιστούν οι ταχύτητες των δύο σωμάτων ελάχιστα πριν και ελάχιστα μετά την κρούση τους.
iii) Να βρεθούν τα πλάτη ταλάντωσης κάθε σώματος μετά την μεταξύ τους κρούση.
iv) Τα δυο σώματα μετά από λίγο θα συγκρουστούν για δεύτερη φορά. Μήπως οι δυο κρούσεις έγιναν στην ίδια θέση; Αν όχι να εξετάσετε αν η 2η αυτή κρούση θα πραγματοποιηθεί, δεξιά ή αριστερά της θέσης που έγινε η πρώτη κρούση.
Θεωρείται δεδομένο ότι η κίνηση ενός σώματος στο άκρο ελατηρίου είναι ΑΑΤ.
ή