Τετάρτη, 27 Φεβρουαρίου 2019

Μια ράβδος σε δύο κεκλιμένα επίπεδα.

Στο σχήμα βλέπετε δύο κεκλιμένα επίπεδα (1) και (2), με κλίσεις  φ=60° και θ=30° αντίστοιχα. Μια οριζόντια ομογενής ράβδος ΑΒ βάρους w=100Ν, ισορροπεί σε επαφή με τα δύο επίπεδα.
i)   Μπορούν και τα δύο επίπεδα να είναι λεία ή όχι; Να δικαιολογήσετε την απάντησή σας.
ii)  Αν δίνεται ότι το επίπεδο (1) είναι λείο, να βρεθούν:
α)  Η δύναμη που δέχεται η ράβδος στο άκρο της Α από το επίπεδο.
β)  Ο ελάχιστος συντελεστής της οριακής στατικής τριβής μεταξύ ράβδου και επιπέδου (2), για την παραπάνω ισορροπία.
ή

Δευτέρα, 25 Φεβρουαρίου 2019

Η ράβδος ισορροπεί οριζόντια, ό,τι και να συμβεί…

Μια λεπτή οριζόντια ομογενής ράβδος ΑΒ είναι αρθρωμένη σε κατακόρυφο τοίχο στο άκρο της Α και μέσω νήματος έχει επίσης προσδεθεί στον ίδιο τοίχο, το μέσον της Μ. Στο άκρο της Β κρέμεται μέσω αβαρούς νήματος μήκους l μια σφαίρα μάζας m.
i)  Η κατακόρυφη συνιστώσα Fy, της  δύναμης που δέχεται η ράβδος από την άρθρωση στο άκρο της Α:
α) Έχει φορά προς τα πάνω.
β) Έχει φορά προς τα κάτω.
γ) Είναι μηδενική.
ii)  Αν η ράβδος έχει βάρος w και g η επιτάχυνση της βαρύτητας, τότε το μέτρο της παραπάνω συνιστώσας Fy είναι:
α) F= w+ mg,    β) F= w,    γ) F= mg.
iii) Εκτρέπουμε τη σφαίρα από τη θέση ισορροπίας της Γ, φέρνοντάς την στη θέση Δ, η οποία απέχει κατακόρυφα απόσταση h= ½ l από την αρχική θέση Γ, και την αφήνουμε να κινηθεί. Η μέγιστη τιμή του μέτρου της κατακόρυφης συνιστώσας Fy που δέχεται η ράβδος από την άρθρωση είναι τώρα:
α) F= mg,    β) F= 2mg,    γ) F= 3mg.
ή

Πέμπτη, 21 Φεβρουαρίου 2019

Ο τροχός ενός αυτοκινήτου που επιταχύνεται


Ένα αυτοκίνητο κινείται σε ευθύγραμμο δρόμο με ταχύτητα υο=4m/s, με αποτέλεσμα οι τροχοί του, ακτίνας R=0,5m να κυλίονται. Σε μια στιγμή t0=0 το αυτοκίνητο επιταχύνεται αποκτώντας σταθερή επιτάχυνση α=1m/s2, ενώ οι τροχοί αποκτούν και σταθερή γωνιακή επιτάχυνση, με αποτέλεσμα τη χρονική στιγμή t1=20s να περιστρέφονται με γωνιακή ταχύτητα ω1=68rad/s.
i  Να υπολογιστεί η ταχύτητα του αυτοκινήτου και η απόσταση που διανύει στη διάρκεια της επιταχυνόμενης κίνησής του, μέχρι τη στιγμή t1.
ii)  Να κάνετε τη γραφική παράσταση της γωνιακής ταχύτητας των τροχών σε συνάρτηση με το χρόνο και με βάση αυτή να βρείτε:
α) τη γωνιακή επιτάχυνση κάθε τροχού.
β) τη γωνία στροφής του τροχού από 0-20s.
iii) Να βρεθεί η ταχύτητα του σημείου επαφής του τροχού με το δρόμο, σημείου Α, τη στιγμή t1.
iv) Να υπολογιστεί η απόσταση κατά την οποία γλίστρησε το σημείο Α στο χρονικό διάστημα 0-t1.
ή

Τρίτη, 19 Φεβρουαρίου 2019

Η κίνηση μιας τετράγωνης πλάκας.


Στην οριζόντια επιφάνεια μιας παγωμένης λίμνης κινείται μια οριζόντια ομογενής τετράγωνη πλάκα πλευράς α=1m, χωρίς να μεταβάλλεται η κίνησή της. Σε μια στιγμή t0=0, η πλάκα βρίσκεται στη θέση που φαίνεται στο διπλανό σχήμα, ενώ οι ταχύτητες της κορυφής Α και του μέσου Μ της πλευράς ΓΔ, έχουν μέτρα υ1=1m/s και υ2=2m/s και κατευθύνσεις όπως στο σχήμα (κάτοψη).
i) Να βρείτε την ταχύτητα του κέντρου Κ της τετράγωνης πλάκας.
ii) Να υπολογιστεί η ταχύτητα της κορυφής Β, την ίδια στιγμή (t0).
iii) Ποιες οι ταχύτητες της κορυφής Α και του σημείου Μ, τη χρονική στιγμή t1=4,71s;
ή

Πέμπτη, 14 Φεβρουαρίου 2019

Η δύναμη στον πυθμένα και η πίεση…


Στο παραπάνω σχήμα, ένα μεγάλο κυλινδρικό δοχείο περιέχει νερό, ενώ κοντά στην βάση του υπάρχει ένας οριζόντιος σωλήνας, μεταβλητής διατομής, μέσω του οποίου εκρέει το νερό σε μια μόνιμη και στρωτή ροή. Στο σημείο Α του σχήματος η ταχύτητα ροής είναι υ και η πίεση p1.
i) Η δύναμη F που ασκεί το νερό στον πυθμένα του δοχείου εμβαδού Α, έχει με μέτρο:
α) F< pατμ+ρgh,   β) F= pατμ+ρgh,   γ) F > pατμ+ρgh
ii) Κλείνουμε με τάπα το δεξιό άκρο του σωλήνα και η ροή σταματά. Τότε η πίεση p2 στο σημείο Α θα αποκτήσει τιμή:
α) p2 < p1 + ½ ρυ2  β) p2 = p1 + ½ ρυ2,    γ) p2 > p1 + ½ ρυ2.

ή
Η δύναμη στον πυθμένα και η πίεση…

Τετάρτη, 13 Φεβρουαρίου 2019

Πού οφείλεται η κίνηση σώματος και πού η ροή;

1) Ένα σώμα μάζας m=2kg, κατέρχεται κατά μήκος ενός λείου κεκλιμένου επιπέδου κλίσεως θ=30°. Σε μια στιγμή περνά από τη θέση Α με ταχύτητα υ1, ενώ μετά από λίγο φτάνει στη βάση του επιπέδου με ταχύτητα μέτρου υ2=4m/s, όπως στο σχήμα. Η κατακόρυφη απόσταση των σημείων Α και Β είναι h=0,6m.
i) Να υπολογιστεί η απαραίτητη σταθερή δύναμη F, παράλληλη στο επίπεδο, που πρέπει να ασκηθεί στο σώμα, αν η ταχύτητα  έχει μέτρο:
α) υ1=4m/s,   β) υ1=2m/s,   γ) υ1=5m/s.
ii) Πού οφείλεται η κίνηση του σώματος σε κάθε περίπτωση;
2)  Στο διπλανό σχήμα δίνεται ένας πλάγιος σωλήνας, τμήμα ενός δικτύου ύδρευσης, όπου το νερό στο σημείο Β ρέει με ταχύτητα μέτρου υ2=4m/s. Στο σημείο Α το οποίο απέχει κατακόρυφη απόσταση h=0,6m από το σημείο Β, η ταχύτητα ροής είναι υ1. Το νερό θεωρείται ιδανικό ρευστό πυκνότητας ρ=1.000kg/m3, η ροή μόνιμη και στρωτή, ενώ pΒ=20.000Ρα και g=10m/s2.
α) Να υπολογιστεί η πίεση στο σημείο Α, όταν:
i)  Ο σωλήνας έχει σταθερή διατομή, όπως στο σχήμα.
ii)  Η ταχύτητα στο σημείο Α είναι υ1=1m/s. Ποια μορφή πρέπει να έχει ο σωλήνας στην περίπτωση αυτή;
iii) Η ταχύτητα στο σημείο Α είναι υ1=6m/s. Ποια η αντίστοιχη μορφή του σωλήνα;
β) Πού οφείλεται η ροή του νερού από το σημείο Α στο Β σε κάθε περίπτωση;
ή

Τρίτη, 12 Φεβρουαρίου 2019

Τρεις διαφορετικές κινήσεις ενός τροχού.



3) Ένας οριζόντιος δίσκος (ένας τροχός…ξαπλωμένος!), κέντρου Κ και ακτίνας R=0,5m, κινείται σε λείο οριζόντιο επίπεδο. Έστω ένα σύστημα ορθογωνίων αξόνων με αρχή το Κ. Το σημείο Α του δίσκου, στη θέση (x,y)=(-0,5m,0) έχει ταχύτητα στη διεύθυνση x, μέτρου υ1=2m/s, ενώ το σημείο Β, στη θέση (x,y)=(0,-0,5m) έχει ταχύτητα υ2 η οποία σχηματίζει με τη διεύθυνση x γωνία θ, όπου εφθ=0,5.
i) Να βρεθεί η ταχύτητα του κέντρου μάζας Κ του δίσκου.
ii) Να υπολογιστεί το μέτρο της ταχύτητας του σημείου Β.
ή

Πέμπτη, 7 Φεβρουαρίου 2019

Η τριβή εξασφαλίζει την ισορροπία;


Η ομογενής ράβδος ΑΒ του σχήματος, βάρους w, ισορροπεί σε οριζόντια θέση, δεμένη στο άκρο της Β με νήμα, το οποίο σχηματίζει γωνία θ με τη ράβδο όπου εφθ=0,5, ενώ το άλλο της άκρο Α, στηρίζεται σε μη λείο κατακόρυφο τοίχο.
i)  Να υπολογιστεί ο ελάχιστος συντελεστής οριακής στατικής τριβής μεταξύ ράβδου και τοίχου, για την παραπάνω ισορροπία.
Δίνεται ο συντελεστής οριακής στατικής τριβής μεταξύ ράβδου και τοίχου μs=0,5.
ii)  Αν στο άκρο Β κρεμάσουμε μέσω νήματος, μια σφαίρα βάρους w1 τότε:
α) Η ασκούμενη τριβή θα αυξηθεί.
β) Το σύστημα θα συνεχίσει να ισορροπεί.
γ) Η ράβδος θα γλιστρήσει στο άκρο της Α.
iii) Ποια η ελάχιστη απόσταση x, από το άκρο Α της ράβδου, στην οποία μπορούμε να τοποθετήσουμε ένα σώμα Σ βάρους  w1, χωρίς να ολισθήσει η ράβδος.
ή

Κυριακή, 3 Φεβρουαρίου 2019

Ένα έμβολο κλείνει το δοχείο.

Στο σχήμα βλέπετε ένα μεγάλο δοχείο, το οποίο περιέχει νερό και το οποίο κλείνεται με βαρύ έμβολο, το οποίο μπορεί να κινείται χωρίς τριβές και πάνω στο οποίο έχουμε τοποθετήσει ένα βαρύ σώμα. Σε βάθος h από την πάνω επιφάνεια του νερού υπάρχει ένας οριζόντιος σωλήνας μεταβλητής διατομής, το δεξιό άκρο του οποίου κλείνεται με τάπα. Αν pατ η ατμοσφαιρική πίεση, ενώ το νερό θεωρείται ιδανικό ρευστό, με πυκνότητα ρ, τότε:
i) Η πίεση στο σημείο Κ έχει τιμή:
α) pΚ=pατ,   β) pΚ=pατ+ρgh   γ) pΚ > pατ+ρgh   δ) pΚ < pατ+ρgh
Βγάζουμε την τάπα και αποκαθίσταται μια μόνιμη ροή με ταχύτητα εκροής στο άκρο του σωλήνα υ.
ii) Για την ταχύτητα εκροής υ ισχύει:
α) υ< 2gh     β)  υ=  2gh  ,      γ) υ>  2gh  .
iii) Για την πίεση τώρα στο σημείο Κ:
α) Παρέμεινε σταθερή και ίση με αυτήν του i) ερωτήματος.
β) Είναι μικρότερη της ατμοσφαιρικής πίεσης
γ) Είναι ίση με την ατμοσφαιρική πίεση.
δ) Είναι μεγαλύτερη της ατμοσφαιρικής πίεσης.
ε) Έχει τιμή pΚ=ρgh.