Παρασκευή, 13 Ιουλίου 2018

Μια κρούση στη διάρκεια μιας οριζόντιας βολής

Από μια θέση Ο, σε ορισμένο ύψος από το έδαφος, εκτοξεύεται οριζόντια μια σφαίρα μάζας m=1kg με ταχύτητα υο=1m/s. Η σφαίρα στην πορεία της και αφού μετατοπισθεί κατακόρυφα κατά h=0,2m, συναντά μια πλάκα Σ μάζας Μ=2kg. Η πλάκα πριν την κρούση ταλαντώνεται κατακόρυφα με πλάτος Α1=0,3m, στο πάνω άκρο ιδανικού ελατηρίου, με φυσικό μήκος lο=1,2m και σταθερά k=25N/m. Η κρούση είναι ελαστική, χωρίς να εμφανιστούν τριβές στη διάρκειά της. Μετά από λίγο, η σφαίρα φτάνει στο σημείο Μ, στο ίδιο οριζόντιο επίπεδο με το σημείο εκτόξευσης Ο, έχοντας οριζόντια ταχύτητα μέτρου υΜ.
i) Να υπολογίσετε την ταχύτητα υΜ.
ii) Να βρείτε την μεταβολή της ορμής της σφαίρας, εξαιτίας της κρούσης.
iii) Ποια η ταχύτητα της πλάκας ελάχιστα πριν και αμέσως μετά την κρούση της με τη σφαίρα;
iv) Πόσο απέχει από το έδαφος η πλάκα της στιγμής της κρούσης;
v) Να βρεθεί το νέο πλάτος ταλάντωσης της πλάκας, μετά την κρούση.
Δίνεται g=10m/s2.
ή

Δευτέρα, 9 Ιουλίου 2018

Στη διάρκεια της ταλάντωσης έχουμε μια κρούση

Ένα σώμα Σ μάζας Μ=3kg ταλαντώνεται σε λείο οριζόντιο επίπεδο, δεμένο στο άκρο οριζόντιου ελατηρίου, σταθεράς k=375Ν/m, γύρω από μια θέση ισορροπίας Ο, όπως στο σχήμα, έχοντας ενέργεια ταλάντωσης Ε1=7,5J. Μια  σφαίρα μάζας m=1kg είναι δεμένη στο άκρο νήματος μήκους l=2m, το άλλο άκρο του οποίου είναι σταθερά δεμένο στο σημείο Μ. Η σφαίρα συγκρατείται στη θέση Β, με το νήμα να σχηματίζει με την κατακόρυφο γωνία θ, όπου συνθ=0,6. Κάποια στιγμή αφήνουμε ελεύθερη τη σφαίρα να κινηθεί και αυτή συγκρούεται κεντρικά και ελαστικά με το σώμα Σ, τη στιγμή που το νήμα γίνεται κατακόρυφο και το Σ απέχει κατά d, από τη θέση ισορροπίας του. Μετά την κρούση η σφαίρα επιστρέφει μέχρι τη θέση που το νήμα να σχηματίσει με την κατακόρυφο γωνία φ, όπου συνφ=0,9.
Να υπολογιστούν:
i) Οι ταχύτητες της σφαίρας, ελάχιστα πριν την κρούση και αμέσως μετά από αυτήν.
ii) Οι αντίστοιχες ταχύτητες του σώματος Σ.
iii) Η απόσταση d της θέσης κρούσης, από τη θέση ισορροπίας του σώματος Σ.
iv) Η μέγιστη ταχύτητα που θα αποκτήσει το σώμα Σ, μετά την κρούση.
ή

Τρίτη, 3 Ιουλίου 2018

Η απομάκρυνση στις ταλαντώσεις

Ένα σώμα ηρεμεί σε λείο οριζόντιο επίπεδο, δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου, στη θέση Ο, όπως στο (α) σχήμα.
i) Να εξηγήσετε γιατί το ελατήριο έχει το φυσικό μήκος του.
ii) Εκτρέπουμε το σώμα προς τα δεξιά κατά d και αφήνοντάς το, αυτό εκτελεί απλή αρμονική ταλάντωση. Στο (γ) σχήμα φαίνεται το σώμα σε μια τυχαία θέση. Γράφοντας την εξίσωση της απομάκρυνσης x=Α∙ημ(ωt+φ0), ποια ακριβώς είναι η απομάκρυνση x; Να σχεδιαστεί το διάνυσμά της πάνω στο
σχήμα.
iii) Σε μια άλλη περίπτωση το σώμα εκτρέπεται κατά d προς τα δεξιά, αλλά αφήνοντάς το, αυτό εκτελεί φθίνουσα ταλάντωση, αφού δέχεται δύναμη απόσβεσης της μορφής F=-bυ. Στη θέση Κ (σχήμα (δ)) Fελ=Fαπ, όπου Fελ το μέτρο της δύναμης από το ελατήριο και Fαπ το μέτρο της δύναμης απόσβεσης. Μας δίνεται τώρα η εξίσωση της απομάκρυνσης, η οποία έχει τη μορφή:
x= Α0∙e-Λt∙ημ(ωt+φ0)
Ποια είναι τώρα η απομάκρυνση x, με βάση το διπλανό σχήμα (ε), το διάνυσμα x1 ή το διάνυσμα x2;
iv) Το ίδιο σώμα, τίθεται σε εξαναγκασμένη ταλάντωση, με την επίδραση οριζόντιας εξωτερικής δύναμης της μορφής Fεξ=F0∙ημ(ωδt), ενώ ταυτόχρονα δέχεται και δύναμη απόσβεσης Fαπ=-bυ. Αν η απομάκρυνση του σώματος δίνεται από την εξίσωση x=Α∙ημ(ωδt+φ0), τότε η απομάκρυνση x αντιστοιχεί:
α) στο διάνυσμα x1, β) στο διάνυσμα x2,  γ) σε άλλο διάνυσμα
του σχήματος (ε).
v) Ποια θα ήταν η απάντηση στο προηγούμενο ερώτημα, αν η εξωτερική δύναμη είχε τη μορφή:
Fεξ=F0∙συν(ωδt);
ή