Τετάρτη, 14 Νοεμβρίου 2018

Αλλαγή του άξονα περιστροφής. Πώς εφαρμόζεται η ΑΔΣ.


Σε λείο οριζόντιο επίπεδο περιστρέφεται μια ομογενής ράβδος μάζας Μ=3kg και μήκους l=2m με γωνιακή ταχύτητα μέτρου ω0=1rαd/s, όπως στο σχήμα (κάτοψη). Μια σφαίρα μάζας m=Μ=3kg κινείται στο ίδιο επίπεδο με ταχύτητα υ0 =4m/s και συγκρούεται πλαστικά στο άκρο Α της ράβδου, τη στιγμή που η σφαίρα έχει ταχύτητα κάθετη στη ράβδο.
Να υπολογιστεί η γωνιακή ταχύτητα του στερεού s που προκύπτει, καθώς και η ταχύτητα της σφαίρας, αμέσως μετά την κρούση.
Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ο, Ιο= (1/12)Μl2.
ή

Τετάρτη, 7 Νοεμβρίου 2018

Η ενέργεια σε μια Εξαναγκασμένη Ταλάντωση



Ένα σώμα μάζας 0,2kg είναι δεμένο στο άκρο ενός οριζόντιου ιδανικού ελατηρίου σταθεράς k=16Ν/m και με την επίδραση μιας εξωτερικής αρμονικής δύναμης F, εκτελεί ταλάντωση, όπου (μετά το πέρας των μεταβατικών φαινομένων) η απομάκρυνση από τη θέση ισορροπίας (θέση φυσικού μήκους του ελατηρίου) έχει τη μορφή x=0,5∙ημ(10t) (S.Ι.). Στη διάρκεια της ταλάντωσης το σώμα δέχεται αντίσταση από τον αέρα της μορφής Fαπ=-0,2∙υ (μονάδες στο S.Ι.).
i)  Να υπολογιστούν η μέγιστη κινητική και η μέγιστη δυναμική ενέργεια του σώματος στη διάρκεια της εξαναγκασμένης αυτής ταλάντωσης.
ii) Για τη στιγμή που το σώμα περνά από τη θέση Β του σχήματος, με απομάκρυνση x1=0,4m και με θετική (προς τα δεξιά) ταχύτητα, να βρεθούν:
α)  Η επιτάχυνση και η εξωτερική δύναμη F.
β)  Η κινητική και η δυναμική ενέργεια. Πόσο είναι το άθροισμα Κ+U;
γ)  Οι ρυθμοί μεταβολής της κινητικής και δυναμικής ενέργειας.
δ)  Η ισχύς της εξωτερικής δύναμης, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας της αντίστασης αέρα.
ή

Κυριακή, 4 Νοεμβρίου 2018

Η ενέργεια σε μια φθίνουσα ταλάντωση



Ένα σώμα Σ μάζας 2kg είναι δεμένο στο κάτω άκρο ενός κατακόρυφου ιδανικού ελατηρίου σταθεράς k=20Ν/m και εκτελεί κατακόρυφη ταλάντωση, όπως στο σχήμα, ενώ δέχεται και δύναμη απόσβεσης τη μορφής Fαπ=-b∙υ. Σε μια στιγμή t1 περνά από τη θέση ισορροπίας του (x=0) κινούμενο προς τα πάνω με ταχύτητα υ1=5m/s, έχοντας ταυτόχρονα και επιτάχυνση με φορά προς τα κάτω και μέτρο α1=1m/s2.
i)  Να υπολογιστεί η σταθερά απόσβεσης b.
ii) Να βρεθούν την παραπάνω στιγμή t1:
α) Η ενέργεια ταλάντωσης.
β) Ο ρυθμός μεταβολής της ενέργειας ταλάντωσης του σώματος Σ.
iii) Μετά από λίγο, τη στιγμή t2 το σώμα Σ φτάνει στη θέση Ρ με απομάκρυνση y=1m (θετική φορά προς τα πάνω), με μηδενική ταχύτητα. Για τη στιγμή t2, να βρεθούν η επιτάχυνση του σώματος Σ, καθώς και ο ρυθμός με τον οποίο μειώνεται η ενέργεια ταλάντωσης εξαιτίας της δύναμης απόσβεσης.
iv)  Πόση είναι η μηχανική ενέργεια που εμφανίζεται ως θερμική από τη στιγμή t1, μέχρι τη στιγμή t2;
v)   Μια άλλη χρονική  στιγμή t3 το σώμα περνά από τη θέση y3=-0,5m κινούμενο προς τα κάτω με ταχύτητα μέτρου υ3=3,2m/s. Για τις χρονικές στιγμές t1, t2, t3 ισχύει:
α)  t1 < t2 < t3,    β)  t1 < t3 < t2,   γ)  t3 < t1 < t2.
Να δικαιολογήσετε την επιλογή σας.
 ή

Πέμπτη, 1 Νοεμβρίου 2018

Η ταλάντωση στην καρότσα του φορτηγού.



Ένα σώμα Σ μάζας 2kg είναι δεμένο στο άκρο ενός οριζόντιου ελατηρίου σταθεράς k=200Ν/m και βρίσκεται στην λεία καρότσα ενός φορτηγού, όπως στο σχήμα. Με το σύστημα αυτό, μελετάμε τρεις κινήσεις, η μελέτη των οποίων θα γίνει ως προς έναν προσανατολισμένο άξονα x με αρχή το σημείο Ο, σημείο από το οποίο περνά το σώμα Σ τη στιγμή t0=0. 
i) Το φορτηγό κινείται προς τα δεξιά με σταθερή ταχύτητα v=2m/s, ενώ το ελατήριο έχει το φυσικό μήκος του.
Να βρεθεί η θέση, η ταχύτητα και η κινητική ενέργεια του σώματος Σ τη στιγμή t1=(7π/30)s≈0,7 s.
ii) Το  φορτηγό παραμένει ακίνητο, ενώ το σώμα Σ εκτελεί ΑΑΤ με εξίσωση απομάκρυνσης x=0,2∙ημωt (S.Ι.):
α) Να βρεθεί η θέση, η ταχύτητα και η κινητική ενέργεια του σώματος τη στιγμή t1.
β) Ποιος ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος τη χρονική στιγμή t2=π/4 s;
iii) Το φορτηγό κινείται προς τα δεξιά με σταθερή ταχύτητα v, ενώ το σώμα Σ πάνω στην καρότσα τίθεται σε ταλάντωση με την ίδια, εξίσωση x=0,2∙ημωt (S.Ι.), ως προς την καρότσα του φορτηγού:
α) Τι τιμές θα πάρουν τώρα η θέση, η ταχύτητα και η κινητική ενέργεια του σώματος τη στιγμή t1.
β) Να κάνετε τη γραφική παράσταση της ταχύτητας του Σ σε συνάρτηση με το χρόνο και να υπολογίσετε τη μέγιστη και ελάχιστη κινητική του ενέργεια.
γ) Ποιος ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ τη χρονική στιγμή t2;

Σημείωση: Όλα τα παραπάνω μεγέθη θα υπολογιστούν ως προς έναν ακίνητο παρατηρητή στο έδαφος.

Απάντηση:
ή