Πέμπτη, 9 Αυγούστου 2018

Μια χορδή με σταθερό το ένα της άκρο


Το πρόβλημα της δημιουργίας στάσιμου κύματος, πάνω σε μια χορδή με πακτωμένο το ένα της άκρο, όταν το άλλο άκρο τίθεται σε εγκάρσια ταλάντωση, είναι ίσως ένα από τα θέματα που μας έχουν απασχολήσει περισσότερο τα χρόνια ύπαρξης του δικτύου μας. Με πάμπολλες μελέτες αλλά κυρίως συζητήσεις και αντεγκλήσεις. Δημιουργείται πάντα στάσιμο κύμα ή όχι; Είναι σωστές οι εξισώσεις του σχολικού ή χρειάζονται τροποποιήσεις; Τι δημιουργείται στη θέση της πηγής; Δεσμός ή κοιλία; Ή κάτι άλλο;
Ο Γιάννης Κυριακόπουλος έχει επιμείνει (μέχρι και που ο ίδιος μίλησε για εμμονή…), σε πάμπολλες αφορμές, ότι έχουμε πάντα δημιουργία στάσιμου κύματος και μάλιστα το πλάτος του στάσιμου δεν έχει να κάνει καθόλου με αυτό που  διδάσκουμε, δηλαδή ότι στις κοιλίες έχουμε πλάτος 2 Α, όπου Α το πλάτος της πηγής.
Έτσι για παράδειγμα μπορείτε να  διαβάσετε εδώ τις θέσεις του και να δείτε εικόνες με στάσιμα, που τον επιβεβαιώνουν.

Το προηγούμενο καλοκαίρι, ξεκίνησα μια σειρά άρθρων με πρώτο το «Ενέργεια – ορμή κύματος» στηριζόμενος στις παραδόσεις του Κωνσταντίνου Ευταξία στο ΕΚΠΑ. Ας πιάσουμε λοιπόν το νήμα από εκεί που το αφήσαμε, κάνοντας μια προσπάθεια να ξεδιαλύνουμε κάποια σημεία στα στάσιμα κύματα, μιλώντας όσο γίνεται, λιγότερο για μαθηματικά και περισσότερο  για Φυσική. Ας δούμε λοιπόν κάποιες όψεις, καλοκαίρι έχουμε, μπορούμε να …ασχοληθούμε λίγο!

Κύμα και στάσιμο κύμα σε χορδή. Ποια η διαφορική εξίσωση;
Αναφερόμενοι στα κύματα σε χορδή, συναντάμε τη διαφορική εξίσωση:

Και συνήθως το μυαλό μας την συνδέει με το τρέχον κύμα σε χορδή, πράγμα όχι σωστό. Η παραπάνω εξίσωση αναφέρεται σε ένα στοιχειώδες τμήμα της χορδής, συνδέοντας την καμπυλότητα του τμήματος, με την εγκάρσια επιτάχυνση που αποκτά. Η σωστή γραφή της είναι:
Όπου στην περίπτωση του τρέχοντος κύματος η ποσότητα υ=√(Τ/μ)  μας δίνει την (φασική) ταχύτητα διάδοσης της διαταραχής (ταχύτητα κύματος). Σε κάθε άλλη περίπτωση μένει μια ποσότητα εξαρτώμενη από την αδράνεια και την ελαστικότητα της χορδής, χωρίς να «λειτουργεί» ως ταχύτητα ενός ανύπαρκτου κύματος.
Αλλά τότε η ίδια διαφορική εξίσωση περιγράφει και το τρέχον κύμα σε χορδή (υποτίθεται απείρου μήκους) και το στάσιμο κύμα ή την ταλάντωση μιας χορδής με σταθερά ή μη άκρα.
Δεν υπάρχει δηλαδή κάποια  διαφορά (στο 2ο  νόμο του Νεύτωνα…), για την επιτάχυνση ενός τμήματος χορδής, ανάλογα με το τι ακριβώς συμβαίνει στη χορδή ή πόσο είναι το μήκος της…

Διαβάστε τη συνέχεια...

ή
 Μια χορδή με σταθερό το ένα της άκρο

Δεν υπάρχουν σχόλια: