Η ράβδος του σχήματος, μήκους l=2m μπορεί να στρέφεται σε οριζόντιο επίπεδο, γύρω από κατακόρυφο άξονα ο οποίος περνά από το άκρο της Ο, ενώ στο άλλο της άκρο έχει προσκολληθεί ένα σώμα Σ1, μάζας m1=1kg. Η ράβδος είναι αρχικά ακίνητη στη θέση (1), ενώ τη στιγμή t=0, δέχεται κατάλληλη δύναμη F, η ροπή της οποίας, της προσδίδει σταθερή γωνιακή επιτάχυνση. Μόλις η ράβδος περνά από την θέση (2) για δεύτερη φορά, το σώμα Σ1 αποκολλάται και στη συνέχεια κινείται ευθύγραμμα στο ίδιο οριζόντιο επίπεδο και αφού διανύσει απόσταση d=3,5m, συγκρούεται κεντρικά και ελαστικά, με ένα σώμα Σ2, μάζας m2=2kg, το οποίο είναι ακίνητο. Τελικά τα δυο σώματα ηρεμούν, απέχοντας μεταξύ τους απόσταση S=2,5m. Να υπολογιστούν:
i) Οι ταχύτητες των δύο σωμάτων, αμέσως μετά την ελαστική μεταξύ τους κρούση.
ii) Η ταχύτητα του σώματος Σ1, την στιγμή που αποχωρίζεται τη ράβδο.
iii) Η χρονική στιγμή t1 της αποκόλλησης του σώματος Σ1.
iii) Η επιτάχυνση του σώματος Σ1 ελάχιστα πριν την αποκόλλησή του από την ράβδο, στην διεύθυνση της ταχύτητας. Ποια η αντίστοιχη επιτάχυνση στην κάθετη διεύθυνση;
Δίνεται η γωνία φ=90°, που σχηματίζουν οι δυο παραπάνω θέσεις της ράβδου (1) και (2), οι διαστάσεις των σωμάτων Σ1 και Σ2 θεωρούνται αμελητέες, ενώ ο συντελεστής τριβής ολίσθησης μεταξύ των σωμάτων και του επιπέδου μ=0,1. Εξάλλου g=10m/s2.
ή
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου