Κυριακή, 19 Μαρτίου 2017

Άλλη μια ράβδος στρέφεται

Η ομογενής ράβδος του σχήματος μάζας Μ=3kg και μήκους l=2m, είναι αρθρωμένη στο άκρο της Ο, γύρω από το οποίο μπορεί να στρέφεται χωρίς τριβές. Η ράβδος ισορροπεί, κρεμασμένη στο άκρο κατακόρυφου νήματος, το οποίο έχει προσδεθεί στο σημείο Β, όπου (ΒΑ)=0,4m, σχηματίζοντας γωνία θ με την οριζόντια διεύθυνση. Σε μια στιγμή κόβουμε το νήμα, οπότε η ράβδος κατέρχεται και τη στιγμή που γίνεται οριζόντια, το άκρο της Α έχει ταχύτητα υΑ=6m/s.
i)  Για την αρχική θέση (πριν να κοπεί το νήμα), να βρεθεί η τάση του νήματος, καθώς και η γωνία θ που σχηματίζει η ράβδος με την οριζόντια διεύθυνση.
ii) Να βρεθεί η κατακόρυφη επιτάχυνση του μέσου Κ της ράβδου καθώς και η οριζόντια και κατακόρυφη συνιστώσα της δύναμης που ασκείται στη ράβδο από την άρθρωση, στην οριζόντια θέση.
iii) Αναφερόμενοι στην οριζόντια θέση, δυο μαθητές, ο Χ και ο Υ, θέλουν να υπολογίσουν τη στροφορμή και το ρυθμό μεταβολής της στροφορμής ως προς το άκρο Ο (ισοδύναμα ως προς σταθερό οριζόντιο άξονα z κάθετο στο επίπεδο περιστροφής που περνά από το άκρο Ο). Ο Χ θεωρεί την κίνηση στροφική γύρω από τον άξονα z, ο Υ θεωρεί την κίνηση σύνθετη, μια μεταφορική του κέντρου μάζας και μια περιστροφή γύρω από κάθετο άξονα που περνά από το Κ.
Ποιες είναι οι απαντήσεις που θα δώσουν;
iv) Να υπολογιστεί επίσης η στροφορμή και ο αντίστοιχος ρυθμός μεταβολής της ως προς:
 α) σταθερό οριζόντιο άξονα, κάθετο στο επίπεδο περιστροφής που περνά από το μέσον της Κ της ράβδου.
 β) σταθερό οριζόντιο άξονα, κάθετο στο επίπεδο περιστροφής, ο οποίος περνά από το άκρον Α της ράβδου.
Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιcm= (1/12)∙ Μl2 και g=10m/s2.
ή
Άλλη μια ράβδος στρέφεται

Δεν υπάρχουν σχόλια: