Η ομογενής ράβδος ΟΑ μήκους d=5/3m και μάζας m=5,4kg, μπορεί να στρέφεται χωρίς τριβές, κινούμενη σε κατακόρυφο επίπεδο, γύρω από σταθερό οριζόντιο άξονα, ο οποίος περνά από το άκρο της Ο. Η ράβδος συγκρατείται σε οριζόντια θέση, ενώ το άκρο της Α είναι δεμένο στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k=15Ν/m με φυσικό μήκος lο=2/3 m, το άλλο άκρο του οποίου έχει προσδεθεί σε σταθερό σημείο Β, όπως στο σχήμα.
Σε μια στιγμή αφήνουμε τη ράβδο να κινηθεί, οπότε μετά από λίγο γίνεται κατακόρυφη με οριζόντιο το ελατήριο. Ζητούνται:
i) Η αρχική γωνιακή επιτάχυνση της ράβδου, μόλις αφεθεί να πέσει.
ii) Η ταχύτητα του άκρου Α τη ράβδου, τη στιγμή που αυτή γίνεται κατακόρυφη.
iii) Ο ρυθμός μεταβολής της δυναμικής ενέργειας του ελατηρίου, την στιγμή που γίνεται οριζόντιο.
iv) Θεωρώντας το οριζόντιο επίπεδο το οποίο διέρχεται από το σημείο Β, ως επίπεδο μηδενικής δυναμικής ενέργειας, να υπολογιστεί η μέγιστη μηχανική ενέργεια της ράβδου στη διάρκεια της κίνησής της.
Δίνεται η ροπή αδράνειας της ράβδου ως προς τον άξονα περιστροφής της Ι=md2/3 και g=10m/s2.
ή
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου