Τρίτη 28 Απριλίου 2009

Ενέργειες στην Εξαναγκασμένη Ταλάντωση. Μόνο για καθηγητές.

Με αφορμή τις αναρτήσεις Εξαναγκασμένη Ταλάντωση και ΣΥΝΤΟΝΙΣΜΟΣ. Και Εξαναγκασμένη και φθίνουσα Ηλεκτρική Ταλάντωση πήρα 3-4 μηνύματα από συναδέλφους, οι οποίοι μου εξέφραζαν απορίες πάνω στην διατήρηση ενέργειας σε μια εξαναγκασμένη ταλάντωση.
Για ξεκαθάρισμα της κατάστασης ας δούμε ένα παράδειγμα αναλυτικά.
.
Άσκηση:

Στο παρακάτω κύκλωμα R=10Ω, το ιδανικό πηνίο έχει αυτεπαγωγή L=0,15Ω και ο πυκνωτής χωρητικότητα C=2mF, ενώ η τάση της πηγής δίνεται από την εξίσωση

Να βρεθούν:
1)    Η μέγιστη ενέργεια του μαγνητικού πεδίου του πηνίου και η μέγιστη ενέργεια του ηλεκτρικού πεδίου του πυκνωτή.
2)    Για τη χρονική στιγμή t1=π/200 s να βρεθούν:
..........α) Ο ρυθμός με τον οποίο παρέχει ενέργεια στο κύκλωμα η γεννήτρια.
......... β)Η ισχύς στην αντίσταση, στο πηνίο και στον πυκνωτή.
Λύση:
 Η εμπέδηση του πηνίου είναι ΖL=Lω=15Ω, του πυκνωτή ΖC= 1/Cω = 1/2·10-3·100Ω=5Ω, οπότε:

και το κύκλωμα διαρρέεται από ρεύμα πλάτους:
Έτσι το διανυσματικό διάγραμμα των τάσεων είναι το παρακάτω.
1) Με βάση τα προηγούμενα έχουμε λοιπόν:
UΒmax= ½ LΙ2 = ½ ·0,15·4 J= 0,3J.
UΕmax= ½ CVοC2 = ½ ·2·10-3·(2·5)2J = 0,1J αλλά και UΕmax= ½ Q2/C όπου Ι=ωQ →
Q= Ι/ω= 2/100 C= 0,02C, οπότε UΕmax= ½ 4·10-4/2·10-3=0,1J.
Προφανώς οι δύο ενέργειες δεν είναι ίσες.
2) Τη χρονική στιγμή t1 έχουμε:
Τι δείχνουν αυτές οι τιμές της ισχύος;
Η γεννήτρια προσφέρει ενέργεια στο κύκλωμα με ρυθμό 40J/s, από αυτά 20J/s μετατρέπονται σε θερμότητα στον αντιστάτη και τα υπόλοιπα 20J/s αποθηκεύονται στο μαγνητικό πεδίο του πηνίου. Επίσης ο πυκνωτής εκφορτίζεται χάνοντας ενέργεια με ρυθμό 10J/s, η οποία επίσης αποθηκεύεται στο πηνίο (20W+10W= 30W).
Εδώ κρύβεται η διατήρηση της ενέργειας και όχι μεταξύ πηνίου – πυκνωτή.
Σχόλιο: Πού γίνεται συνήθως το λάθος στην εξαναγκασμένη ταλάντωση; Λέμε ότι ο διεγέρτης ασκεί δύναμη αντίθετη στην δύναμη απόσβεσης με αποτέλεσμα η ταλάντωση να είναι αμείωτη. Αυτό ισχύει μόνο στον συντονισμό. Σε κάθε άλλη περίπτωση η εξωτερική δύναμη παρουσιάζει κάποια άλλη διαφορά φάσης με την δύναμη απόσβεσης με αποτέλεσμα κάθε στιγμή η ισχύς της μιας και της άλλης να μην είναι αντίθετες. Και ποιο είναι το σωστό;
Στη διάρκεια μιας περιόδου, όση ενέργεια μετατρέπεται σε θερμότητα εξαιτίας της απόσβεσης (ή της αντίστασης R) προσφέρεται στο σύστημα από τον διεγέρτη, με αποτέλεσμα το πλάτος να παραμένει σταθερό. Δηλαδή στο παραπάνω κύκλωμα, για τη μέση ισχύ έχουμε:
Ρμ=Vεν·Ιεν  συνθ = 20·2/2 ½ ·2 ½ /2 W= 20W, ενώ
Ρ Rεν2·R= (2/2 ½)2· 10W= 20W.

Δεν υπάρχουν σχόλια: